Special Topics in Intelligent Transportation
|
1343-1348

Intelligent scheduling algorithm of three-dimensional rail transit system based on high-frequency station and time window

Zhang Shuai
Gu Yufeng
Ling Hao
Li Chengshan
Key Laboratory for Highway Construction Technology & Equipment of Ministry of Education, Chang'an University, Xi'an 710064, China

Abstract

At present, there are almost no reports on vehicle scheduling methods for three-dimensional rail transit system, and the real-time performance of existing vehicle scheduling algorithms is poor. Aiming at the scheduling problem of three-dimensional rail transit vehicles, this paper studied an order allocation algorithm combining high and low frequency station judgment and a Dijkstra path planning algorithm combining time window, namely intelligent scheduling algorithms, to improve the operating efficiency of vehicles. Firstly, it used the order allocation algorithm to select the appropriate execution vehicle for the order to reduce the waiting time of passengers. Secondly, it added the judgment of high and low frequency stations on the basis of the order allocation algorithm, and scheduled vehicles to the high frequency stations in advance to ensure the balance of supply and demand. Then, it combined the ordinary Dijkstra algorithm and time window judgment to realize multi-vehicle conflict-free path planning. Finally, it redeveloped the OpenTCS software and simulated the scheduling algorithm with the software. The results show that the average waiting time of the passenger from calling the vehicles is 8.043 s only using the order allocation algorithm. After the advance scheduling of vehicles combined with high and low frequency stations, the average waiting time is reduced to 5.724 s, and the waiting time of each passenger is reduced by 2.319 s. During the path planning, both the ordinary Dijkstra algorithm and the Dijkstra algorithm combined with time window took less than 1 ms to plan. However, the Dijkstra algorithm combined with time window only increases the time about 0.1 ms, and solves the problems of the vehicle path conflicts. The studied intelligent scheduling algorithm can reduce the waiting time of the passengers and improve the running efficiency of vehicles. The algorithm has good real-time performance and can meet the scheduling requirements of three-dimensional rail transit vehicles.

Foundation Support

国家自然科学基金资助项目(52205249)
陕西省自然科学基础研究计划资助项目(2022JQ-434)

Publish Information

DOI: 10.19734/j.issn.1001-3695.2023.09.0427
Publish at: Application Research of Computers Printed Article, Vol. 41, 2024 No. 5
Section: Special Topics in Intelligent Transportation
Pages: 1343-1348
Serial Number: 1001-3695(2024)05-009-1343-06

Publish History

[2023-12-08] Accepted Paper
[2024-05-05] Printed Article

Cite This Article

张帅, 古玉锋, 凌浩, 等. 基于高频车站及时间窗的立体轨道交通系统智能调度算法 [J]. 计算机应用研究, 2024, 41 (5): 1343-1348. (Zhang Shuai, Gu Yufeng, Ling Hao, et al. Intelligent scheduling algorithm of three-dimensional rail transit system based on high-frequency station and time window [J]. Application Research of Computers, 2024, 41 (5): 1343-1348. )

About the Journal

  • Application Research of Computers Monthly Journal
  • Journal ID ISSN 1001-3695
    CN  51-1196/TP

Application Research of Computers, founded in 1984, is an academic journal of computing technology sponsored by Sichuan Institute of Computer Sciences under the Science and Technology Department of Sichuan Province.

Aiming at the urgently needed cutting-edge technology in this discipline, Application Research of Computers reflects the mainstream technology, hot technology and the latest development trend of computer application research at home and abroad in a timely manner. The main contents of the journal include high-level academic papers in this discipline, the latest scientific research results and major application results. The contents of the columns involve new theories of computer discipline, basic computer theory, algorithm theory research, algorithm design and analysis, blockchain technology, system software and software engineering technology, pattern recognition and artificial intelligence, architecture, advanced computing, parallel processing, database technology, computer network and communication technology, information security technology, computer image graphics and its latest hot application technology.

Application Research of Computers has many high-level readers and authors, and its readers are mainly senior and middle-level researchers and engineers engaged in the field of computer science, as well as teachers and students majoring in computer science and related majors in colleges and universities. Over the years, the total citation frequency and Web download rate of Application Research of Computers have been ranked among the top of similar academic journals in this discipline, and the academic papers published are highly popular among the readers for their novelty, academics, foresight, orientation and practicality.


Indexed & Evaluation

  • The Second National Periodical Award 100 Key Journals
  • Double Effect Journal of China Journal Formation
  • the Core Journal of China (Peking University 2023 Edition)
  • the Core Journal for Science
  • Chinese Science Citation Database (CSCD) Source Journals
  • RCCSE Chinese Core Academic Journals
  • Journal of China Computer Federation
  • 2020-2022 The World Journal Clout Index (WJCI) Report of Scientific and Technological Periodicals
  • Full-text Source Journal of China Science and Technology Periodicals Database
  • Source Journal of China Academic Journals Comprehensive Evaluation Database
  • Source Journals of China Academic Journals (CD-ROM Version), China Journal Network
  • 2017-2019 China Outstanding Academic Journals with International Influence (Natural Science and Engineering Technology)
  • Source Journal of Top Academic Papers (F5000) Program of China's Excellent Science and Technology Journals
  • Source Journal of China Engineering Technology Electronic Information Network and Electronic Technology Literature Database
  • Source Journal of British Science Digest (INSPEC)
  • Japan Science and Technology Agency (JST) Source Journal
  • Russian Journal of Abstracts (AJ, VINITI) Source Journals
  • Full-text Journal of EBSCO, USA
  • Cambridge Scientific Abstracts (Natural Sciences) (CSA(NS)) core journals
  • Poland Copernicus Index (IC)
  • Ulrichsweb (USA)