In accordance with regulations and requirements, the editorial department's website domain has been changed to arocmag.cn. The original domain (arocmag.com) will be discontinued after Dec. 31st, 2024.
Technology of Graphic & Image
|
2860-2866

Queue posture detection with fusion of binocular information

Zhao Jifa1
Wang Cheng1
Rong Yingjiao2
1. School of Internet of Things, Jiangnan University, Wuxi Jiangsu 214122, China
2. Science & Technology on Near-surface Detection Laboratory, Wuxi Jiangsu 214000, China

Abstract

In order to realize the accurate evaluation of queue posture and action, aiming at the problem that it is difficult to accurately measure the three-dimensional human posture characteristics such as kick height in the training scene, this paper proposed a queue three-dimensional posture feature detection method based on binocular information. The method is divided into two stages: the 2D pose estimation stage and binocular stereo matching stage. In order to improve the accuracy of 2D human pose detection, it designed a 2D pose estimation model based on the improved HRNet network. Firstly, it introduced spatial channel attention in the back-bone network to enhance feature extraction capabilities. The feature fusion layer used an adaptive spatial feature fusion module to fuse multi-scale features of the network. Secondly, it used the unbiased data processing method to encode and decode the heat map to reduce the statistical error of the data. Finally, it adopted a coarse-to-fine multi-stage supervision method during model training to improve the detection accuracy of key points. Based on the 2D pose estimation model, it used the standard correlation matching function to achieve binocular stereo matching, and then obtained the 3D human pose through coordinate transformation. The experimental results show that the improved pose estimation network has better accuracy, the accuracy of the COCO dataset reaches 77.1%, and the detection accuracy of the self-made queue training dataset reaches 86.3%, which are respectively 2.2% and 3.1% higher than the original network. In the kick height experiment of the three-dimensional human body posture, the average relative error measured by the proposed method is 2.5%, which fully verifies the effectiveness of the algorithm.

Foundation Support

近地面探测技术重点实验室基金资助项目(6142414220203)

Publish Information

DOI: 10.19734/j.issn.1001-3695.2023.11.0595
Publish at: Application Research of Computers Printed Article, Vol. 41, 2024 No. 9
Section: Technology of Graphic & Image
Pages: 2860-2866
Serial Number: 1001-3695(2024)09-041-2860-07

Publish History

[2024-02-23] Accepted Paper
[2024-09-05] Printed Article

Cite This Article

赵继发, 王呈, 荣英佼. 融合双目信息的队列姿态检测 [J]. 计算机应用研究, 2024, 41 (9): 2860-2866. (Zhao Jifa, Wang Cheng, Rong Yingjiao. Queue posture detection with fusion of binocular information [J]. Application Research of Computers, 2024, 41 (9): 2860-2866. )

About the Journal

  • Application Research of Computers Monthly Journal
  • Journal ID ISSN 1001-3695
    CN  51-1196/TP

Application Research of Computers, founded in 1984, is an academic journal of computing technology sponsored by Sichuan Institute of Computer Sciences under the Science and Technology Department of Sichuan Province.

Aiming at the urgently needed cutting-edge technology in this discipline, Application Research of Computers reflects the mainstream technology, hot technology and the latest development trend of computer application research at home and abroad in a timely manner. The main contents of the journal include high-level academic papers in this discipline, the latest scientific research results and major application results. The contents of the columns involve new theories of computer discipline, basic computer theory, algorithm theory research, algorithm design and analysis, blockchain technology, system software and software engineering technology, pattern recognition and artificial intelligence, architecture, advanced computing, parallel processing, database technology, computer network and communication technology, information security technology, computer image graphics and its latest hot application technology.

Application Research of Computers has many high-level readers and authors, and its readers are mainly senior and middle-level researchers and engineers engaged in the field of computer science, as well as teachers and students majoring in computer science and related majors in colleges and universities. Over the years, the total citation frequency and Web download rate of Application Research of Computers have been ranked among the top of similar academic journals in this discipline, and the academic papers published are highly popular among the readers for their novelty, academics, foresight, orientation and practicality.


Indexed & Evaluation

  • The Second National Periodical Award 100 Key Journals
  • Double Effect Journal of China Journal Formation
  • the Core Journal of China (Peking University 2023 Edition)
  • the Core Journal for Science
  • Chinese Science Citation Database (CSCD) Source Journals
  • RCCSE Chinese Core Academic Journals
  • Journal of China Computer Federation
  • 2020-2022 The World Journal Clout Index (WJCI) Report of Scientific and Technological Periodicals
  • Full-text Source Journal of China Science and Technology Periodicals Database
  • Source Journal of China Academic Journals Comprehensive Evaluation Database
  • Source Journals of China Academic Journals (CD-ROM Version), China Journal Network
  • 2017-2019 China Outstanding Academic Journals with International Influence (Natural Science and Engineering Technology)
  • Source Journal of Top Academic Papers (F5000) Program of China's Excellent Science and Technology Journals
  • Source Journal of China Engineering Technology Electronic Information Network and Electronic Technology Literature Database
  • Source Journal of British Science Digest (INSPEC)
  • Japan Science and Technology Agency (JST) Source Journal
  • Russian Journal of Abstracts (AJ, VINITI) Source Journals
  • Full-text Journal of EBSCO, USA
  • Cambridge Scientific Abstracts (Natural Sciences) (CSA(NS)) core journals
  • Poland Copernicus Index (IC)
  • Ulrichsweb (USA)