背景图增强的社交网络重要节点自适应排序算法
Self-adaptive algorithm for ranking important nodes in social networks enhanced by ground graph
中国人民公安大学 信息网络安全学院, 北京 100038
摘要
社交网络中的重要节点对网络结构和功能具有决定性影响,开发精度更高的重要节点排序算法成为当前的研究热点之一。其中,LR(LeaderRank)引入一个背景节点明显提升了经典PageRank排序算法的性能,但仍面临着网络中小出度用户的投票权偏见问题。因此,提出背景图增强的社交网络重要节点自适应排序算法AGR(Adaptive GraphRank),构建多节点背景图替代LR的单一背景节点,基于H指数设计有偏向的随机游走,缓解投票权偏见。调参实验初步确定了背景图的最优规模和结构,与K-TOPSIS等现有优秀算法进行对比实验,验证了AGR在传播、瓦解、鲁棒性三个关键维度上的性能提升,实际案例检验了算法在真实场景下的有效性。综上,AGR有效缓解了投票权偏见,提高了排序精度,展示出较优的性能和应用潜力。
基金项目
中国人民公安大学网络空间安全执法技术双一流专项(2023SYL07)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.07.0300
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第3期
发布历史
[2024-12-11] 优先出版
引用本文
冯俊又, 陈李舟, 刘先博, 等. 背景图增强的社交网络重要节点自适应排序算法 [J]. 计算机应用研究, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.07.0300. (Feng Junyou, Chen Lizhou, Liu Xianbo, et al. Self-adaptive algorithm for ranking important nodes in social networks enhanced by ground graph [J]. Application Research of Computers, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.07.0300. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊