基于目标图像先验信息的无监督多聚焦图像融合
Unsupervised multi-focus image fusion based on target image prior information
山东建筑大学 信息与电气工程学院, 济南 250101
摘要
多聚焦图像融合(MFIF)是从不同源图像中获取聚焦区域,以形成全清晰图像的一种图像增强方法。针对目前MFIF方法主要存在的两个方面问题,即传统的空间域方法在其融合边界存在较强的散焦扩散效应(DSE)以及伪影等问题;深度学习方法缺乏还原光场相机生成的数据集,并且因需要大量手动调参而存在训练过程耗时过多等问题,提出了一种基于目标图像先验信息的无监督多聚焦图像融合方法。首先,将源图像本身的内部先验信息和由空间域方法生成的初始融合图像所具有的外部先验信息分别用于G-Net和F-Net输入,其中,G-Net和F-Net都是由U-Net组成的深度图像先验(DIP)网络;然后,引入一种由空间域方法生成的参考掩膜辅助G-Net生成引导决策图;最后,该决策图联合初始融合图像对F-Net进行优化,并生成最终的融合图像。验证实验基于具有真实参考图像的Lytro数据集和融合边界具有强DSE的MFFW数据集,并选用了5个广泛应用的客观指标进行性能评价。实验结果表明,该方法有效地减少了优化迭代次数,在主观和客观性能评价上优于8种目前最先进的MFIF方法,尤其在融合边界具有强DSE的数据集上表现得更有优势。
基金项目
国家自然科学基金资助项目(62003191)
山东省自然科学基金资助项目(ZR2014FM016)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.09.0444
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第6期
所属栏目: 图形图像技术
出版页码: 1901-1909
文章编号: 1001-3695(2024)06-044-1901-09
发布历史
[2024-01-26] 优先出版
[2024-06-05] 印刷出版
引用本文
谢明, 曲怀敬, 吴延荣, 等. 基于目标图像先验信息的无监督多聚焦图像融合 [J]. 计算机应用研究, 2024, 41 (6): 1901-1909. (Xie Ming, Qu Huaijing, Wu Yanrong, et al. Unsupervised multi-focus image fusion based on target image prior information [J]. Application Research of Computers, 2024, 41 (6): 1901-1909. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊