根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于残差网络的小型车辆目标检测算法

Small vehicle target detection algorithm based on residual network
厍向阳
韩伊娜
西安科技大学 计算机科学与技术学院, 西安 710054

摘要

城市道路中车辆检测与识别对于提升交通安全,发展智能化交通具有非常重要的意义。传统的检测方式依赖于人工提取的特征,已难以适用于复杂多变的交通场景,存在识别精确度低、时间复杂度高等缺陷。深度学习模型可以自动提取有用特征,泛化能力强,但难以对相似型车辆进行更加精细的分类,为此提出一种基于残差网络的小型车辆目标检测算法。算法将传统卷积神经网络的连接形式改为一种基于局部连接和权值共享的残差连接模式,同时更改网络结构控制参数数量,将图片不同层次的特征融合计算,应用感兴趣区域池化层规格化前层特征,最后经过分类层和回归层得到目标框的置信度以及修正参数。实验表明,改进模型能够在保证时间效率的前提下增强网络的学习能力,提高平均精度,在相似小型车辆的检测问题上取得了良好的检测结果。

基金项目

陕西省自然科学基金资助项目(2017JM6105)

出版信息

DOI: 10.19734/j.issn.1001-3695.2019.03.0102
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第8期
所属栏目: 图形图像技术
出版页码: 2556-2560
文章编号: 1001-3695(2020)08-067-2556-05

发布历史

[2020-08-05] 印刷出版

引用本文

厍向阳, 韩伊娜. 基于残差网络的小型车辆目标检测算法 [J]. 计算机应用研究, 2020, 37 (8): 2556-2560. (She Xiangyang, Han Yina. Small vehicle target detection algorithm based on residual network [J]. Application Research of Computers, 2020, 37 (8): 2556-2560. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊