根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于动态学习率深度神经网络的抗干扰信道编码算法

Anti-interference channel coding algorithm based on dynamic learning rate deep neural network
徐建业a
杨霄鹏b
李伟b
王泓霖a
空军工程大学 a. 研究生院; b. 信息与导航学院, 西安 710038

摘要

针对电子战条件下,通信信号易受压制干扰的问题,提出了一种基于动态学习率深度自编码器(dynamic learning rate deep AutoEncoder,DLr-DAE)的信道编码算法来提高系统抗压制干扰性能。首先对输入未编码信号进行预处理,将原始输入信号转换为单热矢量;随后使用训练数据样本集,用非监督学习方法训练深度自编码器,基于随机梯度下降法(SGD)更新网络参数,利用指数衰减函数,在迭代次数和网络损失函数值变化过程中动态微调学习率,减少网络迭代循环次数,避免收敛结果陷入局部最优点,从而获得面向电子战环境的信道编码深度学习网络。仿真结果表明,相比现有深度学习编码算法,该算法在取得同等误码率时,抗噪声压制干扰性能最大可提升0.74 dB。

基金项目

国家自然科学基金资助项目
航空科学基金资助项目

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.12.0948
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第7期
所属栏目: 网络与通信技术
出版页码: 2171-2174
文章编号: 1001-3695(2020)07-052-2171-04

发布历史

[2020-07-05] 印刷出版

引用本文

徐建业, 杨霄鹏, 李伟, 等. 基于动态学习率深度神经网络的抗干扰信道编码算法 [J]. 计算机应用研究, 2020, 37 (7): 2171-2174. (Xu Jianye, Yang Xiaopeng, Li Wei, et al. Anti-interference channel coding algorithm based on dynamic learning rate deep neural network [J]. Application Research of Computers, 2020, 37 (7): 2171-2174. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊