基于Boosting优先经验重放的协同计算卸载方法
Co-computation offloading method based on boosting prioritized empirical replay
贵州大学 a. 公共大数据国家重点实验室; b. 文本计算与认知智能教育部工程研究中心; c. 计算机科学与技术学院; d. 贵州省软件工程及信息安全特色重点实验室, 贵阳 550025
摘要
现有计算卸载方法没有考虑终端设备和边缘服务器的不同任务排队情况,导致计算卸载模型的时延估计存在偏差。更重要的是,现有基于强化学习的计算卸载方法通过计算时序差分(Temporal Difference error,TD)误差进行经验重放,无法精确评估历史经验的重要性,导致卸载决策精度降低。为解决上述问题,在移动蜂窝网络边缘计算场景下,考虑多设备、多服务器的计算卸载问题,提出一种基于Boosting优先经验重放的协同计算卸载方法—COOPERANT。针对任务调度问题,COOPERANT构建了终端设备任务排队模型及服务器任务排队模型;针对任务卸载问题,COOPERANT设计了融合Boosting的优先经验重放算法、任务卸载联合优化模型、计算卸载多智能体深度强化学习模型及COOPERANT网络更新策略。实验证明,相比于遗传算法、蚁群算法、鲸鱼优化算法、MADDPG算法、TD- MADDPG算法以及MAPPO算法,COOPERANT能够有效降低系统时延和能耗开销,提升网络收敛速度。
关键词
基金项目
国家重点研发计划(2023YFC3304500)
国家自然科学基金资助项目(62102111)
贵州省科技重大专项(黔科合重大专项字[2024]003)
贵州省高等学校大数据安全与网络安全创新团队(黔教技[2023]052号)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.08.0313
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第3期
发布历史
[2024-12-16] 优先出版
引用本文
黄毅, 王文轩, 崔允贺, 等. 基于Boosting优先经验重放的协同计算卸载方法 [J]. 计算机应用研究, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.08.0313. (Huang Yi, Wang Wenxuan, Cui Yunhe, et al. Co-computation offloading method based on boosting prioritized empirical replay [J]. Application Research of Computers, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.08.0313. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊