根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

联合边缘特征的物流驾驶员危险行为识别

Logistics driver dangerous behavior recognition based on edge features
侯贵捷1
王呈1
夏源2
杜林2
1. 江南大学物联网工程学院, 江苏 无锡 214122
2. 江阴怡源-江南大学工业智能运维联合实验室, 江苏 无锡 214400

摘要

准确识别物流驾驶员接打电话等危险行为是实现生产安全的重要一环。针对工业现场背景复杂、驾驶员手臂动作相似度高等问题,提出一种联合边缘特征的物流驾驶员危险行为识别算法EF-GCN(Edge Feature Graph Convolutional Networks)。首先,提出基于自适应图卷积的空间感知模块,考虑人体运动过程中远离质心的边缘关节点,设计空间感知算法以提高权重分配。其次,设计时空边缘注意力模块,在时空均值化后添加边缘卷积,改善模型对边缘特征提取不充分的缺点;同时,引入可分离卷积SC Block(Separable Convolution Block),替换主干网络中的标准卷积,减少模型参数量。最后,构建相似特征识别网络SF-RN(Similar Feature Recognition Network),对接打电话、抽烟等手臂相似行为进行区分,强化算法对相似行为的识别能力。实验结果表明,EF-GCN算法较传统的时空图卷积网络识别精度提高10.4%,较基线模型提升3.2%,能够准确识别物流驾驶员危险行为,验证了算法有效性。

基金项目

近地面探测技术重点实验室基金资助项目(6142414220203)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.06.0251
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第3期

发布历史

[2024-12-06] 优先出版

引用本文

侯贵捷, 王呈, 夏源, 等. 联合边缘特征的物流驾驶员危险行为识别 [J]. 计算机应用研究, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.06.0251. (Hou Guijie, Wang Cheng, Xia Yuan, et al. Logistics driver dangerous behavior recognition based on edge features [J]. Application Research of Computers, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.06.0251. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊