根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于生成对抗网络的人脸属性合成技术综述

Review of face attribute synthesis techniques based on generative adversarial networks
王健强1
张珂1,2
李培杰1
1. 华北电力大学 电子与通信工程系, 河北 保定 071003
2. 华北电力大学 河北省电力物联网技术重点实验室, 河北 保定 071003

摘要

人脸属性合成技术旨在保留人脸面部图像身份信息的情况下,根据指定目标重建人脸属性,从而在源图像上合成具有全新属性的人脸。计算机视觉技术的发展为人脸属性合成技术提供了全新的解决方案,为此,从人脸属性合成数据集、传统和生成对抗网络(Generative Adversarial Network,GAN)的合成网络以及对人脸语义方面综述了人脸属性合成技术的发展。首先分析了人脸属性合成领域中传统方法和主流的深度学习方法,探讨基于GAN方法的发展现状,将基于GAN的人脸属性合成模型划分为有监督,无监督以及半监督三种,并将人脸属性划分年龄、表情、妆容三大类语义并对多种合成模型进行深入研究。其次,将典型的损失函数进行分析和总结。同时介绍了常用人脸属性数据集以及评价指标。最后介绍现有人脸属性合成方法面临的问题,并对该领域未来的发展提出展望。

基金项目

国家自然科学基金资助项目(62076093,62206095,61871182)
中央高校基本科研业务费专项资金资助项目(2023JG002,2022MS078,2023JC006)
河北省省级科技计划资助项目(SZX2020034)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.05.0240
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第3期

发布历史

[2024-12-03] 优先出版

引用本文

王健强, 张珂, 李培杰. 基于生成对抗网络的人脸属性合成技术综述 [J]. 计算机应用研究, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.05.0240. (Wang Jianqiang, Zhang Ke, Li Peijie. Review of face attribute synthesis techniques based on generative adversarial networks [J]. Application Research of Computers, 2025, 42 (3). (2024-12-16). https://doi.org/10.19734/j.issn.1001-3695.2024.05.0240. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊