基于分区搜索和强化学习的多模态多目标头脑风暴优化算法
Multimodal multi-objective brain storm optimization algorithm based on zoning search and reinforcement learning
1. 上海海事大学 物流研究中心, 上海 201306
2. 上海交通大学 电力传输与功率变换控制教育部重点实验室, 上海 200240
3. 华东理工大学 能源化工过程智能制造教育部重点实验室, 上海 200237
摘要
维持种群多样性和提高算法搜索效率是多模态多目标优化亟需解决的两大问题。为解决以上问题,提出了一种基于分区搜索和强化学习的多模态多目标头脑风暴优化算法(MMBSO-ZSRL)。在MMBSO-ZSRL中,首先将决策空间分解为多个子空间以降低搜索难度和维持种群多样性;然后,使用SARSA(state-action-reward-state-action) 算法来平衡头脑风暴算法的全局探索和局部开发能力;并使用特殊拥挤距离来挑选个体来指导种群进化。为了验证所提算法的性能,选取六种先进的多模态多目标优化算法来进行比较,并选取IEEE CEC2019多模态多目标问题基准测试集来对所有比较算法的性能进行测试。实验结果表明,MMBSO-ZSRL的整体性能要显著优于其他六种比较算法。MMBSO-ZSRL不仅可以找到多样性和逼近性更好的帕累托前沿,而且可以在决策空间找到更多的帕累托最优解。
基金项目
教育部人文社科基金规划基金资助项目(23YJAZH029)
上海市浦江人才计划资助项目(22PJD030)
国家自然科学基金资助项目(61603244)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.12.0588
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第8期
所属栏目: 算法研究探讨
出版页码: 2374-2383
文章编号: 1001-3695(2024)08-018-2374-10
发布历史
[2024-02-22] 优先出版
[2024-08-05] 印刷出版
引用本文
李鑫, 余墨多, 姜庆超, 等. 基于分区搜索和强化学习的多模态多目标头脑风暴优化算法 [J]. 计算机应用研究, 2024, 41 (8): 2374-2383. (Li Xin, Yu Moduo, Jiang Qingchao, et al. Multimodal multi-objective brain storm optimization algorithm based on zoning search and reinforcement learning [J]. Application Research of Computers, 2024, 41 (8): 2374-2383. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊