根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于对比学习的心电信号情绪识别方法

ECG-based emotion recognition based on contrastive learning
龙锦益1a,1b,2
方景龙1a
刘斯为1a
吴汉瑞1a
张佳1a
1. 暨南大学 a. 信息科学技术学院; b. 广东省中医药信息技术重点实验室, 广州 510632
2. 广州琶洲实验室, 广州 510335

摘要

现有的机器学习和深度学习在解决基于心电信号的情绪识别问题时主要使用全监督的学习方法。这种方法的缺点在于需要大量的有标签数据和计算资源。同时,全监督方法学习到的特征表示通常只能针对特定任务,泛化性较差。针对这些问题,提出了一种基于对比学习的心电信号情绪识别方法,该方法分为预训练和微调两步。预训练的目的是从未标记的心电数据中学习特征表示,具体为:设计了两种简单高效的心电信号增强方式,将原始数据通过这两种数据增强转换成两个相关但不同的视图;接着这两种视图在时间对比模块中学习鲁棒的时间特征表示;最后在上下文对比模块中学习具有判别性的特征表示。微调阶段则使用带标记数据来学习情绪识别任务。在三个公开数据集上的实验表明,该方法在心电信号情绪识别准确率上与现有方法相比提高了0.21%~3.81%。此外,模型在半监督设定场景中表现出高有效性。

基金项目

国家自然科学基金资助项目(62276115)
广东省中医药信息化重点实验室资助项目(2021B1212040007)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.07.0354
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第4期
所属栏目: 系统应用开发
出版页码: 1123-1130
文章编号: 1001-3695(2024)04-024-1123-08

发布历史

[2023-11-02] 优先出版
[2024-04-05] 印刷出版

引用本文

龙锦益, 方景龙, 刘斯为, 等. 基于对比学习的心电信号情绪识别方法 [J]. 计算机应用研究, 2024, 41 (4): 1123-1130. (Long Jinyi, Fang Jinglong, Liu Siwei, et al. ECG-based emotion recognition based on contrastive learning [J]. Application Research of Computers, 2024, 41 (4): 1123-1130. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊