针对隐式反馈推荐系统的表征学习方法

Representation for implicit feedback recommender
梅岚翔a
郁雪b
天津大学 a. 智能与计算学部; b. 管理与经济学部, 天津 300000

摘要

基于邻域的top-N推荐算法利用隐式反馈数据建立排序模型,其算法性能严重依赖于相似度函数的表现。传统相似性度量函数在隐式反馈数据上会遇到数据过于稀疏和维数过高两个问题,稀疏数据不利于推荐模型选取光滑的邻域,过高的数据维数会导致维数灾难问题,导致推荐算法表现较差。为此提出一种基于表征学习方法的推荐算法,改进算法实现了基于二部图网络的多目标节点表征学习方法,在节点表征中通过嵌入不同层次的网络结构信息和适合推荐任务的次序信息来提升推荐性能。三个不同规模真实数据集上的实验结果表明,该算法相较于常用的基于隐式反馈的推荐模型具有更高的准确率和召回率,特别是针对大规模数据集能够有效缓解矩阵稀疏性问题和维数灾难问题,提高推荐性能。

基金项目

国家自然科学基金资助项目(71502125)

出版信息

DOI: 10.19734/j.issn.1001-3695.2019.02.0063
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第8期
所属栏目: 算法研究探讨
出版页码: 2266-2272
文章编号: 1001-3695(2020)08-005-2266-07

发布历史

[2020-08-05] 印刷出版

引用本文

梅岚翔, 郁雪. 针对隐式反馈推荐系统的表征学习方法 [J]. 计算机应用研究, 2020, 37 (8): 2266-2272. (Mei Lanxiang, Yu Xue. Representation for implicit feedback recommender [J]. Application Research of Computers, 2020, 37 (8): 2266-2272. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊