基于生成对抗网络的遮挡表情识别

Occluded facial expression recognition based on generative adversarial networks
王素琴
高宇豆
张加其
华北电力大学 控制与计算机工程学院, 北京 102206

摘要

针对实际应用中局部遮挡会影响人脸表情识别,提出一种基于生成对抗网络(GAN)的表情识别算法。先对遮挡人脸图像填补修复,再进行表情识别。其中GAN的生成器由卷积自动编码机构成,与鉴别器的对抗学习使得生成的人脸图像更加逼真;由卷积神经网络构成的鉴别器具有良好的特征提取能力,添加多分类层构成了表情分类器,避免了重新计算图像特征。为了解决训练样本不足的问题,将CelebA人脸数据集用于训练人脸填补修复,同时表情分类器的特征提取部分得到了预训练。在CK+数据集上的实验证明,填补后的人脸图像真实连贯,并取得了较高的表情识别率,尤其提高了人脸大面积遮挡的识别率。

出版信息

DOI: 10.19734/j.issn.1001-3695.2018.06.0360
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第10期
所属栏目: 图形图像技术
出版页码: 3112-3115,3120
文章编号: 1001-3695(2019)10-051-3112-04

发布历史

[2019-10-05] 印刷出版

引用本文

王素琴, 高宇豆, 张加其. 基于生成对抗网络的遮挡表情识别 [J]. 计算机应用研究, 2019, 36 (10): 3112-3115,3120. (Wang Suqin, Gao Yudou, Zhang Jiaqi. Occluded facial expression recognition based on generative adversarial networks [J]. Application Research of Computers, 2019, 36 (10): 3112-3115,3120. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊